Cloning and Sequencing of a cDNA for Akazara Scallop Troponin T

Akira Inoue, Takao Ojima, and Kiyoyoshi Nishita¹

Department of Chemistry, Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido 041

Received for publication, June 19, 1996

A cDNA clone encoding troponin T of Akazara scallop (*Chlamys nipponensis akazara*) striated adductor muscle has been isolated and sequenced. The complete sequence deduced consists of 314 amino acid residues with a molecular weight of 37,206. Akazara scallop troponin T contains 55 amino acid residues more and 82 residues fewer than rabbit skeletal muscle troponin T and *Drosophila melanogaster* troponin T, respectively, showing almost the lowest sequence homology with rabbit troponin T (26%) but the highest homology with *Drosophila* troponin T (33%). Further, high sequence homology was seen in the functional regions: residues 33-120 and 174-227, corresponding respectively to residues 71-158 and 197-250 of rabbit troponin T (tropomyosin-binding regions); and residues 200-204, corresponding to 223-227 of rabbit troponin T (troponin I-binding region). In residues 1-70 (tropomyosin-binding region), however, only six residues are identical with rabbit troponin T.

Key words: Ca²⁺-regulation, invertebrates, scallop, striated muscle, troponin T.

Troponin (Tn) is a Ca²⁺-dependent regulatory protein for muscle contraction, consisting of three distinct subunits, troponin T (TnT), troponin C (TnC), and troponin I (TnI) (1-5). Troponin has been found in vertebrate skeletal and cardiac muscles but not in vertebrate smooth muscle. However, it was isolated from both striated (6-8) and smooth (6) adductor muscles of Akazara scallop and Ezogiant scallop (*Patinopecten yessoensis*), which possess two Ca²⁺-regulatory systems, that is, Tn-Tm and myosin light chains (9-11).

Akazara scallop Tn subunits show some characteristic features: TnC with only one Ca²⁺-binding site in domain IV (12), two types of TnI, with a large M_r of 52,000 and a small M_r of 19,000 on SDS-PAGE (7, 13), and TnT showing a slightly larger M_r of 40,000 than vertebrate TnT in addition to high solubility in a low salt solution (14). These features imply that the structural changes of scallop Tn and its subunits in regulatory action are somehow different from those of vertebrate Tn.

In this paper, we describe cloning and sequencing of a cDNA encoding TnT of Akazara scallop striated adductor muscle and sequence comparison with other TnTs in order to better understanding the relationship between structure and function of Akazara scallop TnT.

MATERIALS AND METHODS

Bacterial Strains and Vectors—Strains Y1090 and XL1-Blue of Escherichia coli were purchased from Amersham and Stratagene, respectively. λ gt11 phage and pBluescript II KS(+) plasmid were also purchased from Amersham and Stratagene, respectively. Preparation of mRNA—Total RNA was extracted from Akazara scallop striated adductor muscle by the guanidium isothiocyanate method described in a standard protocol (15). Poly(A)+RNA was isolated using a oligo d(T)-cellulose column (Pharmacia).

cDNA Cloning and Sequencing—cDNA was synthesized by reverse transcription of poly(A)⁺RNA with a random hexanucleotide primer, and λ gtl1 cDNA library was constructed using a commercially available system (Amersham). To select positive phage clones, immunoscreening was used with rabbit anti-Akazara scallop TnT polyclonal antibodies. The cDNAs encoding Akazara scallop TnT were obtained by the *Eco*RI digestion of cloned cDNAs in λ gtl1 and then subcloned to pBluescript II KS(+). Nucleotide sequence was analyzed with a dye-primer cycle sequencing kit (Perkin Elmer-ABI) using a model 373A DNA sequencer (Perkin Elmer-ABI).

Partial Amino Acid Sequencing of Akazara Scallop TnT Protein—Akazara scallop TnT was prepared as reported previously (7, 16). The TnT was digested with 1/200 weight of α -chymotrypsin at 25°C for 20 min in a solution containing 0.5 M KCl, 20 mM Tris-HCl (pH 7.6). Peptide fragments were separated by HPLC on a TSKgel ODS-120T column (4.6×250 mm, Tosoh). The fragments were eluted with a linear gradient of 0-50% acetonitrile at an increasing ratio of 1.0%/min. The effluents were monitored by absorbance at 214 nm. Amino acid sequence was determined by the Edman degradation method using a model 473A sequencer (Perkin Elmer-ABI).

RESULTS AND DISCUSSION

Cloning and Sequencing of a cDNA Encoding TnT— From approximately 10,000 recombinant phage plaques, 21 positive clones were obtained. The sizes of these cDNAs were estimated to be 600-2,300 bp by 1% agarose gel electrophoresis. These cDNAs were subcloned to pBlue-

¹ To whom correspondence should be addressed. e-mail: nishita@fish. hokudai.ac.jp

Abbreviations: TnT, troponin-T; TnI, troponin-I; TnC, troponin-C; Tm, tropomyosin.

script II KS(+), and the nucleotide sequences of 5'- and 3'-terminal regions were analyzed to allow selection of clones containing the complete open reading frame. As a result, one clone comprising 1,500 bp, named AT-3 clone, was selected. The restriction endonuclease map of this clone is shown in Fig. 1. The clone has a nucleotide sequence of 1,467 bp with an open reading frame of 942 bp at positions 70-1011, but no polyadenylation signal or poly-(A) tail in 3'-untranslated region. From this nucleotide sequence, a 314 amino acid sequence was deduced with M_r 37,206 (Fig. 2). As shown in Table I, the amino acid composition obtained from the deduced amino acid sequence is closely consistent with that from TnT protein analysis (13).

To examine whether the AT-3 clone is indeed the clone for Akazara scallop TnT, its partial amino acid sequence

							_		_											
GGC	TAA.	ACI	<u>'CTC</u>	TCT	GGC	GGC	CAT	TTT	TGI	TTI	CGA	CAT	TAC	TAG	TTT	GTG	TAA	CAT	TTA	60
ACT	CAC	ACC	ATG	GAC	TAC	GAC	GAT	GAA	CCA	AGA	ACI	GGA	GAT	GGA	AAT	'GAA	GCA	AGA	CTA	120
			н	D	T	D	D	E	P	R	Т	G	D	G	N	E	A	R	L	17
GCAATGGAGGAGGCCGCCAGGAAGAAGAAGGAGAAGGTGGAAAGTGAGATCGCAGAGTAC														180						
Δ	M	R	R	Δ.		R	R	ĸ	ĸ	R	ĸ	v	R	8	R	т	A	R	Ţ	37
~	~		5		-	~	••	-	••	-	~	•	-		-	-	~	-	•	
C N N		200		~~~	~ > >	~ ~ ~	<u>сс</u> т	~ ~ ~	220			.	C 2 C	CTTC	~~ ~ ~	C B B	CUM	~~~	CIIIC	240
GAA	SAG:	AIG	AGA		GAA	CAA	CGI	GAG	AAG			. GAA	GAC			CAN	CII.	200	010	240
ĸ	Б	л	ĸ	ĸ	5	Ŷ	ĸ	•	Ā	•	A	•	U		5	¥	Ц	ĸ	ы	57
AAG.	AGG	GAA	CAA	AGG	AAG	CAG	GAG	CGG	ATA	GAG	GAA	GAT	'AGA	AGA	CTG	TTG	GAG	ATT	AGG	300
ĸ	R	В	Q	R	ĸ	Q	B	R	I	E	B	D	R	R	L	L	E	I	R	77
AAGGAAGAGGATAAACGCCGCAAGGCAGAGGAGGAGGAGGAGGAAGAAGAAACAGGAG													360							
K	B	Е	D	ĸ	R	R	ĸ	λ	E	E	E	E	R	ĸ	R	K	K	0	E	97
	-	-	-			•••												-		
GAC	22 2	AGG	AAG	AGA	ልጥጥ	GAG	GCT	AAG	מממ	GCT	סאמי	СТА	AAG	GAA	ጥጥር	GAG	GAG	AGA	444	420
n		D	TING.	11011 D			8				¥	T.	TT I	- P	τ.	10110	P	D	T	117
	ъ	A	N	A	-	•	~	~	•	~	~	5	~		-		6		R	117
														~~~				<u></u>	~ ~ ~	
AAG	ATG	rcc	AAG	ACA	CCG	AAC	TTT	GTC	ATC	ACA	AAG	AAG	GGA	GCC	TCC	AAC	TTG	GAG	GAG	480
ĸ	x	8	K	T	P	H		v	I	т	K	K	G	A	8	N	L	B	E	137
GCG	AGT	AAG	GAC	ATG	GCT	AAG	TCT	AAA	GAA	CAG	TTG	GAG	GAG	GAG	AAA	CGG	GCC	ATC	CTT	540
A	8	ĸ	D	ж	A	ĸ	8	K	E	Q	L	E	B	B	K	R	A	I	L	157
										-										
GCT	220	CGT	סידעי	CAG	CCA	CTG	ACA	GTG	GAT	'GG B	ርሞር	GAC	ጥጥር	GCC	'GCC	רייר	ልጥር	GAG	AAG	600
	~	201	T	0.00	D	.010 T	т. Т	.010 W	n	001	T	סתכי	- 10 T		1000		M	7		177
~	¥			¥	F	ц	-	•		G		5	-	~	~	ц	~	Б	Ā	177
													~ ~ ~					~ ~ ~	~~~	
GCT	ACTO	GAG	TTT	CAC	AAT	AAG	ATC	AAG	AGC	Cru	GCC		GAG	AAG	TAT	GAG	CIG	GAG	GAG	660
A	т	B	P	H	H	K	I	K	8	L	A	H	R	K	I	R	L	B	E	197
CGC	<b>FTC</b>	AAG	AGC	CAG	CAA	TAT	GAT	ATG	ATT	GAA	CTG	GCT	GAG	AGA	GCT	'AGA	CAG	ATG	AAC	720
R	F	K	8	Q	Q	T	D	н	I	E	L	λ	B	R	A	R	Q	H	R	217
				_	_												-			
AAG	GA	AAG	AAG	AGA	GCT	GTC	CAG	GTC	GAT	GAC	TCA	TAT	GAT	ccc	ATG	GCA	GAA	ΑΑΑ	ТАТ	780
T	ā	T	T	Ð		v	0	v	D	n	R	<b>T</b>	n	P	M	D	R	T		237
A	U.		•	~	A	•	¥	•		-		•	-	•	-	~		~	•	237
000		<b>.</b>				~~~	~~~	3 000	-	200			~~~	. ~ .	~~~	200	~ ~	~~~		
GGC	AGI	IGI			~~~	GTT	CAG	AIG	IAC	AGC		TAT	GAG	AGA	CAC	ACT	GAC	CIC.	AGA	840
G	8	C	P	P	K	v	Q	A	I	<u>ĕ</u>	<u> </u>	Ţ	K	K	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	257
ACA	<b>L</b> AC	GGI	ACC	AGG	GTA	GAT	TAT	TTC	GAA	ACA	AAA	GCC	AAA	AAA	ATA	GAA	GCC	GAA	ATG	900
T.,	Y	Ģ	T	R	V	D	T	F	E	Т	ĸ	λ	K	K	I	E	A	E	Ж	277
GCA	ATC	GGT	AGG.	ААА	AAG	GAA	GAA	GAT	AAC	стс	TTG	AAG	ACA	ATG	GAA	GAA	ACG	GAG	GAA	960
	т	a	R	π	T	R	R	D	N	τ.	Т.	ĸ	T	м	R	R	T		R	297
•	-	•		••		-	-	-		-	-		-		-	-	-	-	-	
		~ ~ ~	~~~	~~~	~~~	~~~	~~~	~~~	~~~	~	~~~	000	~~~ N	~~~	~~~	~	-		~~~	
ACT		-	GCC	GCA		GCA		GAG	GCA	GAA	GIC	GUU	GCA	GAG	GAG	GAA	TAG	AGT	GIU	1020
т	8	Е	A	A	P	A	Р	В	A	Ę	v	A	A	R	B	B	Stop			314
ATC	\GG'	ГСA	AGG	TCA	TAG	CCT	AGG	AGG	тса	ACA	GAT	TGA	GTC.	ата	GAT	GTC	GGT.	AAC.	ACC	1080
TGT	ATC	стт	TGC	CAG	AGG	GTG	TGT	GTC.	ATG	GGC	GTA	CTT	ACG.	ACG	ACA	ААТ	GTG	TGT	GAT	1140
GTC/	ATCO	СТА	GTC	ACC	ATA	GTA	ACG	ACA	ACT	GTT	GTC	GTT	AGC.	AAC	AGT	GAA	ACA	TTT	GTT	1200
GTC	AGT	AGC	AAC	AGT	GAA	стс	ATT	CAT	TAG	ттт	ACC	CAT	ТАТ	TAA	GGT	ATT	AGT	TCG	AAA	1260
2701	10-11 10-11	100		CBC	222	GTC		200	GTTC	ልጥ እ	202	7777	Car		TCA	ጥሮእ	000	CC»	እጥሮ	1220
AA11			101				~~~						amm		104					1320

TTTAATTGATTAAACATGTTGTGCAGTAGATAACGTTTGAAGAAGTTCTAAATCATACCT 1440 TCCCTTTTTGGAAAAATAAGGTCAGCG 1467

Fig. 2. Nucleotide sequence and its deduced amino acid sequence of Akazara scallop TnT. The initiation site for translation and the termination codon are boxed. The deduced amino acid sequence is shown in bold letters. The underlined amino acid sequence has been confirmed with the 16 kDa peptide fragment obtained by  $\alpha$ -chymotryptic digestion of the TnT.

with HPLC. The 16 kDa fragment alone was obtained in a //wed III

was determined as follows: TnT protein was digested with

 $\alpha$ -chymotrypsin, and the resultant six major fragments of

36, 28, 26, 16, 14, and 5 kDa were subjected to separation



Fig. 1. Restriction map of Akazara scallop TnT cDNA from clone AT-3. The stippled and open flanking boxes represent the open reading frame and untranslated regions, respectively. The locations of several restriction sites are shown.

pure state, and its sequence was analyzed. The sequence of 17 amino acids, SKYERHTDLRTYGTRVD, was determined and found to be consistent with residues 248-264 of the deduced sequence. Therefore, the AT-3 is identified as an Akazara scallop TnT clone.

Sequence Comparison of Various TnTs—Amino acid sequences of Akazara scallop, Drosophila (17, 18), and rabbit TnTs (19) are aligned to maximize sequence homology in Fig. 3. According to a computer search for the data base NBRF-PIR (release 42.0), Akazara scallop TnT showed the highest homology (33%) with Drosophila TnT but almost the lowest homology (26%) with rabbit TnT.

The Akazara scallop TnT contains 55 residues more and 82 residues fewer than rabbit and *Drosophila* TnTs, respectively. It is shorter by 27 residues at the N-terminus and longer by 78 residues at the C-terminus compared with rabbit skeletal TnT; and shorter by 5 residues at the N-

terminus and by 65 residues at the C-terminus compared with *Drosophila* TnT.

A hydropathy plot (20) and the predicted secondary structure (21) of Akazara scallop TnT are shown in Fig. 4. These features are similar to those of TnTs so far investigated. Thus, Akazara scallop TnT was assumed to contain 74%  $\alpha$ -helix, 8%  $\beta$ -sheet, and 10%  $\beta$ -turn. Such a high content of  $\alpha$ -helix is also in common with TnTs.

Sequence Comparison of Functional Regions—Residues 1-70 of rabbit TnT have been reported to bind to both the C-terminal region and the head-to-tail junction of Tm (22). However, in view of the low sequence homology, it is questionable whether the corresponding residues of Akazara scallop TnT possess the same functions.

Residues 71-158 of rabbit TnT are thought to bind by ionic bonds with the middle portion of Tm (22), where many acidic and basic amino acid residues exist (23). The

Aka.	MDYDDEPRTG	10
Dro.	MSDDEEYTSEEEEVV	15
Rab.	SDEEVEHVEEEAQEEAPSPAEVHEPAPEHVVPEE-VH	36
Aka.	DGNEARLAMEEAARKKK <mark>EKVE</mark> SEI	34
Dro.	EETREETKPPQTPAEGE <u>GDPE</u> FIKRQDQKRSDLDDOL	52
Rab.	BEEKPRKLTAPKIPEG- <mark>EKY</mark> DFDDIQKKRQNKDLMEL	72
Aka.	AEYEEMRREOREKEAEDLEOLRIKREORKOERIEEDR	71
Dro.	KEYITEWRKORSKEEDELKKIKEKOAKRKVTRAEEO	89
Rab.	QALIDSHFEARKKEEEELVALKERIEKRRAERAEOOR	109
Aka.	RLIEIRKEEDKRRKAEEEERKRKKOEDERKRIEAKKA	108
Dro.	KMAORKKEEEERRVREAEEKKOREIEEKAMRLEEAEK	126
Rab.	IRAEKERERONRLAEEKARREEEDAKRRAEEDLKKKK	146
Aka.	RIKELEERKKMS – - KTPNFVITKKGASNLEEASKDMA	143
Dro.	KROAMLOAMKDKDKKGPNFTIAKKDAGVIGLSSAAME	163
Rab.	AISSMGANYSSYLAKADOKKGKKOTA – – – – – – – – –	172
Aka. Dro. Rab.	O KSKEQLEEEKRAILAORIOPITVDGIDIAAIMEKA RNKTKEOLEEEKKISISFRIKPIAIEGFGEAKIREKA REMKKKILAERRKPINIDHISDEKIRDKA	178 200 201
Aka. Dro. Rab.	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	215 237 238
Aka. Dro. Rab.	O MNRGRERALVOVDDSYDPMAERYGSCPPRVOMYSRYER OLRHEALKKGUDPEALT GRYPPEIOVASRYER LARFSERAGTTAKGRVGGRWE	252 269 259
Aka.	HTDLRTYGTRVDYFETKAKKIEAEMAIGRKKEEDNLL	289
Dro.	RVDTRSYDDKKKLFEGGWDEISKDSNEKIWNEKKEQY	306
Aka.	KTMEETEETSEAAPAPEAEVAAEEE	314
Dro.	TGRQKSKLPKWFGEREGKKAGEPETPEGEEDAKADED	343
Dro.	IVEDDEEVEEEVVEEEDEEDEEDEEEEEEEEEEEEEE	380
Dro.	E E E E E E E E E E E E E E E E E E E	396

Fig. 3. Comparison of amino acid sequences of several TnTs. Aka, Akazara scallop TnT (present paper); Dro, Drosophila melanogaster TnT (17, 18); Rab, rabbit skeletal muscle TnT (19). Residues identical to Akazara scallop TnT are indicated by boxes. Open and closed circles represent two patterns of heptapeptide-repeating units of hydrophobic residues.

 TABLE I. Comparison of the amino acid compositions of the

 Akazara scallop TnT.

Amino soid	TnT					
Allino acid	Protein	Clone AT-3				
Ala	9.8	9.9				
Arg	9.5	9.6				
Asx ^b	8.0	8.0				
Cys		0.3				
Glx ^c	25.9	24.2				
Gly	2.6	2.6				
His	0.6	0.6				
Пe	3.4	3.5				
Leu	6.8	6.7				
Lys	13.6	14.0				
Met	2.8	3.8				
Phe	1.3	1.3				
Pro	2.6	2.5				
Ser	3.1	3.5				
Thr	4.2	3.8				
Тгр	—	0.0				
Тут	3.2	3.2				
Val	2.6	2.5				
Total	100.0	100.0				

•Ojima	and l	Nishita	(13).	ЪАвр	and	Asn.	°Glu	and	Gln.	Values	are
express	ed as	mol%.									



Fig. 4. Hydropathy plot and predicted secondary structure of Akazara scallop TnT. *a*, hydropathy plot by the method of Kyte and Doolittle (20). *b*, predicted secondary structure by the method of Garnier *et al.* (21).

corresponding region of Akazara scallop TnT, residues 33-120, contains 30 acidic and 33 basic residues, with similar features of hydropathy index and predicted  $\alpha$ -helix (Fig. 4).

Further, rabbit TnT is also thought to bind to Tm at residues 197-250 (24), where two patterns of heptapeptide-repeating units of hydrophobic residues were observed. The repeating units are thought to be important for formation of a coiled-coil structure required for Tm-binding (Fig. 4). Akazara scallop TnT showed similar patterns at residues 174-227.

In addition, rabbit TnT showed a sequence, KRQKY, at residues 223-227 that is important for TnI-binding (5). A similar sequence, KSQQY, was seen in Akazara scallop TnT at residues 200-204.

Finally, it was found that the sequences of residues 123-153 and 241-259 of Akazara scallop TnT showed high homology with corresponding residues of *Drosophila* TnT. The roles of these regions are obscure, but it can be considered that these regions of invertebrate TnT possess important functions.

## REFERENCES

- Ebashi, S. and Kodama, A. (1965) A new protein factor promoting aggregation of tropomyosin. J. Biochem. 58, 107-108
- Ebashi, S., Kodama, A., and Ebashi, F. (1968) Troponin. I. Preparation and physiological function. J. Biochem. 64, 465-477
   Schaub, M.C. and Perry, S.V. (1969) The relaxing protein system
- of striated muscle. Biochem. J. 115, 993-1004 Franking Content of Striated Strike Statement of Striated Strike Statement of Striated Strike Statement of Strike Stri
- Ebashi, S., Ohtsuki, I., and Mihashi, K. (1973) Regulatory proteins of muscle with special reference to troponin. *Cold Spring Harbor Symp. Quant. Biol.* 37, 215-224
   Ohtsuki, I., Maruyama, K., and Ebashi, S. (1986) Regulatory and
- Ohtsuki, I., Maruyama, K., and Ebashi, S. (1986) Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv. Protein Chem. 38, 1-67
- Ojima, T. and Nishita, K. (1986) Isolation of troponins from striated and smooth adductor muscles of Akazara scallop. J. Biochem. 100, 821-824
- Ojima, T. and Nishita, K. (1986) Troponin from Akazara scallop striated adductor muscles. J. Biol. Chem. 261, 16749-16754
- Ojima, T. and Nishita, K. (1992) Comparative studies on biochemical characteristics of troponins from Ezo-giant scallop (*Patinopecten yessoensis*) and Akazara scallop (*Chlamys nipponensis akazara*). Comp. Biochem. Physiol. 103B, 727-732
- nensis akazara). Comp. Biochem. Physiol. 103B, 727-732 9. Kendrick-Jones, J., Lehman, W., and Szent-Gyorgyi, A.G. (1970) Regulation in molluscan muscles. J. Mol. Biol. 54, 313-326
- Szent-Gyorgyi, A.G., Szentkiralyi, E.M., and Kendrick-Jones, J. (1973) The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74, 179-203
- Nishita, K., Ojima, T., and Watanabe, S. (1979) Myosin from striated adductor muscle of *Chlamys nipponensis akazara*. J. Biochem. 86, 663-673
- Ojima, T., Tanaka, H., and Nishita, K. (1994) Cloning and sequence of a cDNA encoding Akazara scallop troponin C. Arch. Biochem. Biophys. 311, 272-276
- Ojima, T. and Nishita, K. (1991) A binary complex of troponin-I and troponin-T from Akazara scallop striated adductor muscle. J. Biochem. 110, 847-850
- 14. Ojima, T. and Nishita, K. (1988) Biochemical characteristics of the  $M_r$  52,000 component of Akazara scallop troponin. J. Biochem. 104, 207-210
- Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Ojimá, T. and Nishita, K. (1988) Separation of Akazara scallop and rabbit troponin components by a single-step chromatography on CM-Toyopearl. J. Biochem. 104, 9-11
- Bullard, B., Leonard, K., Larkins, A., Butcher, G., Karlik, C., and Fyrberg, E. (1988) Troponin of asynchronous flight muscle. J. Mol. Biol. 204, 621-637
- Fyrberg, E., Fyrberg, C.C., Beall, C., and Saville, D.L. (1990) Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J. Mol. Biol. 216, 657-675
- Pearlstone, J.R., Johnson, P., Carpenter, M.R., and Smillie, L.B. (1977) Primary structure of rabbit skeletal muscle troponin T. Sequence determination of the NH₂-terminal fragment CB3 and the complete sequence of troponin-T. J. Biol. Chem. 252, 983-989
- Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132
- Garnier, J., Osguthorpe, D.J., and Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97-120
- White, S.P., Cohen, C., and Phillips, G.N., Jr. (1987) Structure of co-crystals of tropomyosin and troponin. *Nature* 325, 826-828
- Parry, D.A.D. (1981) Analysis of the amino acid sequence of a tropomyosin-binding fragment from troponin-T. J. Mol. Biol. 146, 259-263
- 24. Pearlstone, J.R. and Smillie, L.B. (1981) Identification of a second binding region on rabbit skeletal troponin-T for  $\alpha$ -tropomyosin. FEBS Lett. 128, 119-222